高中物理论文

时间:2021-07-01 10:07:06 教学资源 浏览次数:

篇一:高中物理教学论文_浅析物理问题中常见的处理方法

浅谈高中物理问题中常见的处理方法

【摘要】本文主要介绍高中物理学习中常见的几种处理问题的方法,如把研究对象看作理想模型等。

【关键词】图像法理想模型 等效替代法 微元法 近似处理方法

在运用物理知识解决实际问题的过程中,人们逐步积累和形成了物理学中处理问题的方法,在物理教学中,我们一定要使学生逐步理解并掌握这些方法。下面笔者就介绍几种在高中物理中,常用的处理问题的方法:

1.把研究对象、过程视为理想模型

在高中物理中,我们所研究的对象或物理过程可以说都是理想模型,例如在研究对象上有:质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型;又如在研究物理过程时有:匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等等。所以在解答物理问题时,最关键的是:1.明确研究对象及其所处的状态,并把研究对象视为适当的物理模型;2.分析物理过程,并找出物理规律。现在很多学生对于物理规律和物理公式背的很熟,但是真正碰到问题的时候,却无从下手,其主要一个原因是他们不会将一个实际问题抽象为一个正确的模型。所以,在物理教学中,应该让学生体会并掌握这种处理问题的思想和方法。

下面以例题1具体说明如何在解题过程中正确选取研究对象和研究过程。

例题1: 精密测量电子比荷e/m的现代方法之一是双电容法,其装置如图1所示,在真空管中由阴极K发射电子,其初速度可忽略不计。此电子被阴极K与阳极A间的电场加速后穿过屏障D1上的小孔,然后依次穿过电容器C1、屏障

D2上的小孔和第二个电容器C2而射到荧光屏F上。阳极与阴极之间的电势差为U,分别在电容器C1、C2上加有频率为f的完全相同的正弦式交变电压,C1、C2中心间的距离为L,

e2f2L2

选择频率f使电子束在荧光屏上的亮点不发生偏转。试证明电子的比荷为?(其mn2U中n为正整数)。

图1

【点拨解疑】 由题意,研究对象必然是电子,其对象模型显然是带电的质点;对其过程模型的构建,可按先后顺序考虑;首先是在电场中的变加速运动,这是我们能处理的模型;接着进入电容器,遇到偏转电场,由于电容器上加的是变化电压,那么其中的电场是不稳定的,随时间变化的,电子沿电场方向的运动不是匀变速运动,这是我们没办法处理的。但考虑到电子加速后,速度很大,通过电容器的时间极短,如果忽略这一段时间内的电压变化,那么可把电子通过电容器的过程抽象为带电质点在稳定匀强电场中的物理模型,电场的强度取决于进入电场的时机。

现在有两个电容器,而且要求电子最后不偏转,那么电子在电容器中的运动是否有更具体的物理模型呢?模型很简单,就是进入每个电容器的时机都正好是电场强度等于零的时候,电子作匀速直线运动通过两个电容器。

电子进入第一个电容器的时刻t1应满足条件U0sin2?ft1?0,即2?ft1?n1?,其中n1是自然数。

同样,进入第二个电容器的时刻t2应满足条件U0sin2?ft2?0,即2?ft2?n2?。其中n2是自然数。

所以,当t2-t1=

又因为 L2fL?n2?n1?n时,电子束不发生偏转,其中n是正整数。 ,即vv1mv2?eU 2

e2f2L2

所以 ? 2mnU

点评:该题让我们体验到了理想化方法的重要性。带电粒子在电容器中运动,一般是要考虑偏转,但该题却是不偏转,因此构想出这一模型确是该题的难点。

有的时候例题还会取自日常社会生活问题,需要同学们把熟悉的实际问题转化为物理模型,从而运用有关定理、定律来解决它,这也是对实际应用能力的训练。

2.等效替代法

等效法就是在保证某一方面效果相同的前提下,用理想的、熟悉的、简单的物理对象、

物理过程、物理现象替代实际的、陌生的、复杂的物理对象、物理过程、物理现象的思想方法。合力与分力、运动的合成与分解、电阻的串联与并联、交流电的有效值等都是等效法在物理学中的实际应用。

等效法在物理解题中也有广泛的应用,主要有:物理模型的等效替代;物理过程的等效替代;作用效果的等效替代。

在应用等效法解题时,应知道两个事物的等效不是全方位的,只是局部的,特定的、某一方面的等效。因此在具体的问题中必须明确哪一方面等效,这样才能把握住等效的条件和范围。

例题2:如图2所示,在一个平面内有6根彼此绝缘的通电直导线,

通过的电流强度大小相同,方向如图中的箭头所示,I、II、III、IV四

个区域是面积相等的正方形,则垂直纸面向外、磁通量最大的区域为

_________;垂直纸面向里、磁通量最大的区域为_________;磁通量为零

的区域为_________。

【点拨解疑】:本题如果利用安培定则分别判断出6根通电直导线在这

四个区域产生的磁场方向,然后用“·”和“×”的个数表示,再据个数的多少来确定这四个区域的磁通量大小和方向,则非常麻烦,如果用等效法,即把6根等效成1根电流方向如上图虚线所示,再由上述方法便可迅速、准确地判断出所求结果:垂直纸面向外、磁通量最大的区域为II;重直纸面向里、磁通量最大的区域为IV;磁通量为零的区域为I、III。

例题3: 如图3所示,在竖直平面内,放置一个半径R很大

的圆形光滑轨道,O为其最低点。在O点附近P处放一质量为m

的滑块,求由静止开始滑至O点时所需的最短时间。

【点拨解疑】:滑块做复杂的变速曲线运动,故用牛顿定律、

动量定理等方法都难以求解。但只要我们分析透滑块的受力、运

动特征,就会自觉地把滑块等效为单摆的运动,这样,我们便可迅速地求出滑块从P点到O点的最短时间为

1R则t=。 t?T,而T?2?4g

由此可知,等效法是在效果相同的条件下,将复杂的状态或运动过程合理地转化成简单的状态或过程的一种思维方法。

在中学物理练习中,经常需要运用等效法处理问题。我们应当有意识地训练学生,使他们掌握这种处理问题的方法。

3.微元法

微元法指的是我们把研究对象或过程分隔成小块的(微元)来加以研究。这种方法在人民出版社《物理》(新教材)中最为突出,例如在研究匀变速直线运动的位移与时间关系时,如右图4将v-t图象中整个运动过程划分的非常非常细,很

多很多小矩形的面积之和就能准确地代表物体的位移,这时,“很多

很多”小矩形顶端的“锯齿形”就看不出来了,小矩形合在一起成

了一个梯形,面积就是位移,从而推导出位移时间公式:

x?v0t?12at2

微元法实际上是一种微分的思想,在中学物理问题中是一种常用的处理方法。

4.近似处理法

在中学物理研究问题时,我们实际上常常用到近似处理这种方法。例如,我们在研究电荷之间的相互作用力时,我们往往研究电荷之间的静电力,而不考虑电荷之间的万有引力,这时因为电荷之间的万有引力远小于静电力,可以忽略不计。在进行物理实验时,我们也常常忽略一些次要因素,或忽略相对很小的量,这也是近似处理。再比如,对打击碰撞问题,常常有学生问:重力到底考虑不考虑?这也要视具体情况而定的。

例题4:一质量m为5kg的物体,自地面20m高处从静止开始自由下落,物体落地时与地面相互作用时间为0.01s,即停止在地面上,试求物体对地面的平均作用力多大(g取

10m/s)?若相互作用时间为1s,平均作用力多大?

【点拨解疑】(1)物体对地面的平均作用力与地面对物体的作用力是一对作用力与反作用力。所以,可选取物体为研究对象。

(2)物体自由下落时,遵循自由落体运动规律,所以物体与地面作用前的速度v 满足 2v2?2gh ?v?2gh?20m/s, 方。

物体与地面相互作用过程中,受到竖直向下的重力mg和地面给物体竖直向上的平均作用力的作用。物体与地面相互作用后速度等于零。

(3)根据动量定理?F?t?mv?mv,取竖直向上为正方向,得:

(?mg)t?0?(?mv)

t=0.01s时,?mg?mv5?20?5?10??50?10000?10050N t0.01

在这种情况下,重力远小于其它力,在实际问题中可以忽略不计(近似处理)。 t=1s时,?mg?mv5?20?5?10??50?100?150N,重力不能忽略。 t1

从上例中可以看出,一个量是否可以被忽略不计,不是看它的绝对数值(上例中两种情况下重力都是50N),而是看它和其它量相比是否小到可以被忽略不计。这里从数量级上加以比较,是很有效的。

除了上述几种方法外,像分析-综合法、临界分析法、反证法、图像法等等,也是在中学物理中常用的处理问题的方法,教师在平时教学过程中,应逐步教给学生,同时引导学生思考和总结,这样才有利于学生处理物理问题,真正做到举一反三的效果。

参考文献

1.许国梁《中学物理教材教法》 江苏教育出版社,1985年

2.阎金铎,田世昆.《中学物理教学概论》 高等教育出版社,1999年

篇二:高中物理教学论文

高中物理教学论文:物理学习中的记忆力

大部分科目,如外语、历史、地理、政治、语文,甚至包括化学,学习时相当大部分的智力活动是记忆。其实物理学习也需要记忆,而且记忆在物理学习中也很重要。事实上,各门学科的学习都离不开记忆,只不过是不同学科对记忆的要求有所不同。目前,一些高中生把物理概念、规律、公式等背得滚瓜烂熟,却没有真正搞清它们的物理意义,在解决实际问题时不能灵活运用所学的相关知识。这就说明,记住物理知识不等于学会物理。还有一种情况,一些高中生虽然具有较高的智力,在物理学习中却不肯花气力记忆学习的内容,头脑中没有清晰的物理知识,他们的学习成了无源之水,无本之木,同样也学不好物理。上述两种相反的事例告诉我们,物理学习需要记忆。

在高中物理学习中需要记忆什么呢?物理学习中要记忆的内容分为物理知识、物理方法、物理应用三类。

对于物理知识,我们需要记忆物理现象、物理过程、物理模型、相关物理学史、物理概念及其公式、物理规律及其表达式、一些物理常数、物理单位及其换算关系,还有物理知识结构。

对于物理方法,我们则需要记忆物理学方法、实验方法和解题方法。

物理应用包括物理知识应用于生产、生活中的实例,仪器、机械、元件的结构原理和基本的解题模式。

在记忆的时候应讲究方法,突出重点,形成知识结构。

物理学习需要记忆力,同时通过物理学习也发展了学生的记忆力。

高中物理学习的记忆特点主要表现在:

(一)感知物理现象是记忆的基础

物理学是一门实验科学,一切物理概念、物理规律总是以一定的物理现象和实验事实作为基础。我们记忆物理知识必须进入实在的物理环境,感知物理现象,进行实验操作。

(二)理解物理知识是记忆的关键

物理知识需要记忆的内容也是非常多的,单单物理公式高中物理课本中就有二百个左右。在有限的学习时间内,我们仅靠机械记忆显然是不行的,应该以意义记忆为主,而理解物理知识是记忆的关键。物理知识中的概念和规律一般都相当抽象,而概念的扩展和应用又是具体丰富的。如果不能理解其内涵和外延,仅仅从字面来背记是无效的。为了记住物理知识我们必须加深理解。例如,大部分学生常常对楞次定律的记忆感觉困难。我们可以对楞次定律进行分析:它包含一个目的(判定感应电流的方向)两个磁场(感应电流的磁场和引起感应电流的磁场),四个关键字(阻碍变化),结果大家就很容易记住和运用楞次定律。

(三)把不同部分的学习内容对比联系是防止遗忘的有效方法。例如,为了加深对加速度的理解,我们可以对速度、加速度和速度的改变量进行对比分析,大家可以列表从以下几个方面进行比较:物理意义、定义式、决定因素、方向、大小。

(四)形成知识结构是记忆的升华

对于方方面面物理学习内容的记忆不应平均使用力量,要突出重点,使学习内容系统化,提高知识的概括性和适用性,形成更加清晰、完整的知识结构,这样就可以减轻记忆的负担。比如,我们学习高一物理第二章时,大家普遍感到运动学公式比较多,甚至有了放弃学习的

念头,只要我们记住匀变速运动的饿三个重要公式以及运动分解合成的规律就可以了,其它的都是这些知识的运用。

篇三:高中物理教学论文

高一物理学习方法

高一的学生又开始了新一轮的学习与生活。当我个面对这些学生时,应该怎样去把高中物理知识教授给他们,让他们从容面对新的挑战?

一、做好初、高中物理的衔接

高中物理难学,难就难在初中与高中衔接中出现的“台阶”。这个台阶存在于物理教材内容、教学方法和学生的学习能力、思维方法与心理特点上。初中物理学习的物理现象和物理过程,大多是“看得见,摸得着”,而且常常与日常生活现象有着密切的联系。学生在学习过程中的思维活动,大多属于生动的自然现象和直观实验为依据的具体的形象思维,较少要求应用科学概念和原理进行逻辑思维等抽象思维方式。初中物理练习题,要求学生解说物理现象的多,计算题一般直接用公式就能得出结果。高中物理学习的内容在深度和广度上比初中有了很大的增加,研究的物理现象比较复杂,且与日常生活现象的联系也不象初中那么紧密。分析物理问题时不仅要从实验出发,有时还要从建立物理模型出发,要从多方面、多层次来探究问题。在物理学习过程中抽象思维多于形象思维,动态思维多于静态思维,需要学生掌握归纳理,类比推理和演绎推理方法,特别要具有科学想象能力。

刚从初中升上高中的学生普遍不能一下子适应过来,都不,觉得高一物理难学。如何搞好初中物理教学的衔接,降低高初中的物理学习台阶;如何使学生尽快适应高中物理教学特点,渡过学习物理的难关,就成为我们高一物理教师的首要任务。

1.注意新旧知识的同化与顺应

同化是把新学习的物理概念和物理规律整合到原有认知结构的模式之中,认知结构得到丰富和扩展。顺应是认知结构的更新或重建,新学习的物理概念和规律已不能为原有认知结构的模式所容纳,需要改变原有模工或另建新模式。

教师在教学过程中,帮助学生以旧知识同化新知识,使学生掌握新知识,顺利达到知识的迁移。高中教师应了解学生在初中已掌握了哪些知识,并认真分析学生已有的知识。把高中教材研究的问题与初中教材研究的问题在文字表述、研究方法、思维特点等方面进行对比,明确新旧知识之间的联系与差异。选择恰当的教学方法,使学顺利地利用旧知识来同化新知识,就降低了高物理学习的台阶。

许多事例表明,学生能够比较自觉地同化新知识,但往往不能自觉地采用顺应的认知方式。在需要更新或重建认知结构的物理新知识学习中,应及时顺应新知识更新认知结构。例如:初中物理中描述物体运动状态的物理量有速度(速率)、路程和时间;高中物理描述物体运动状态的物理量有速度、位移、时间、加速度等,其中速度位移和加速度除了有大小还有方向,是矢量。教师应及时指导学生顺应新知识,辨析速度和速率、位移和路程的区别,指导学生掌握建立坐标系选取正方向,然后再列运动学方程的研究方法。用新的知识和新的方法来调整、替代原有的认知结构。避免人为的“走弯路”加高学习物理的台阶。

2.加强直观教学

高中物理在研究复杂的物理现象时,为了使问题简单化,经常只考虑其主要因素,而忽略次要因素,建立物理现象的模型,使物理概念抽象化。初中学生进入高中学习,往往感到模型抽象,不可以想象。针对这种情况,应尽量采用直观形象的教学方法,多做一些实验,多举一些实例,使学生能够通过具体的物理现象来建立物理概念,掌握物理概念,设法使他们尝到“成功的喜悦”

3.加强解题方法和技巧的指导

具体的物理问题,有时必须掌握一些特殊的解决问题的方法和技巧。例如:解决力学中连接体的问题时,常用到:“隔离法”;对于不涉及系统内力,系统内各部分运动状态相同的物理问题,用“整体法”简便。刚从初中升上高中的学生,常常是上课听得懂、课本看得明,

但一解题就错,这主要是因为学生对物理知识理解不深,综合运用知识解决问题的能力较弱。针对这种情况,教师应加强解题方法和技巧指导。

高中物理题目类型多,方法灵活,用到初等数学的知识较多。教师在强化概念的同时,应精心准备每一节习题课,为提高习题课的效率,在上习题课前可先将题目布置下去,先让学生做,并让他们争先恐后地想办法解题。每想好一种办法便拿给大家看,实在想不出,就相互讨论。一些有难度的题目上,学生常常争论得面红耳赤,互不相让,到上习题课时,学生们就特别专心,应算一些题目课前没有做出来,但由于课前他们已经将题目思考多次,所以上课也特别容易理解和听得懂。还要引导学生归纳和总结,把课堂上的知识和方法消化吸收。

另外,对学生作业的批改要认真、仔细,批改作业时,一看学生是否会做;二看学生是否认真做,书写是否规范、作图是否准确。对普遍存在的问题要集体更正,个别存在的问题个别更正,不合格的作业一定要重做。通过严格规范的批改作业,使学生形成良好的书写习惯和严密的思维过程;通过精心准备的习题讨论、讲解以及运用各种各样的解题方法,使学生在由简单模仿到运用自如、由运用自如再到自我创造的发展过程中,逐步掌握一定的解题方法和技巧,提高解决问题的能力。

二、提高学生学习的物理兴趣

浓厚的兴趣将是人们刻苦钻研、勇于攻关的强大动力。孔子曰:知之者不如好知者,好之者不如乐之者。爱因斯坦说:“兴趣是最好的教师”。杨振宁博士也说过:“成功的真正秘决是兴趣”。一旦对学习发生兴趣。就会充分发挥自已的积极性和主动性。学生只有对物理感兴趣,才想学、爱学、才能学好。从而用好物理。因此,如何激发学生学习物理的兴趣,是提高教学质量的关键。

1. 加强和改革实验教学,激发学生学习物理的兴趣

通过趣味新奇的物理实验演示,激发学生的好奇心理,从而激发他们思索的谷望。用实验导入新课的方法,可以使学生产生悬念,然后通过授课解决悬念。

每节课的前十几分钟,学生情绪高昂,精神健旺,注意力集中,如果教师能抓住这个有利时机,根据欲讲内容,做一些随手可做的实验,就能激发他们的学习兴趣,使学生的注意力集中起来,如在讲动量和冲量时,让两支相同的粉笔分别从同一高度直接到桌面上和落到有厚毛巾铺垫的桌面上,可以发现直接落到桌面上的粉笔断了,落到厚毛巾垫上的另一支却完好无损,老师由此引入动量和冲量知识的讲授。又如在讲圆周运动的向心力时,可用易拉罐做成“水流星”实验,按照常规认识,当易拉罐运动到最高时,水必往下洒,但从实验结果看却出乎意料之外,水并没有下落。接着使转速慢下来,学生们会发现慢到一定程度后水会洒出,接着提出问题:要使水不洒落下来,必须满足什么条件?从而引入课题使学生在好奇心的驱使下进入听课角色。

2. 教师授课时要有良好的教学艺术

在教学中,教师富有哲理的幽默,能深深地感染和吸引学生,使自已教得轻松,学生学得愉快。

首先教师的生动风趣,能激发和提高学生的学习兴趣。

教学是一门语言艺术,语言应体现出机智和俏皮。课前,教师要进行自我心理调整,这样在课堂上才能有声有色,才能带着愉悦的心情传授知识,从而使学生受到感染。事实表明,教师风趣的语言艺术,能赢得学生的喜爱,信赖和敬佩,从而对学习产生浓厚的兴趣,即产生所谓“爱屋及乌”的效应。

其次教师授课时,要有丰富的情感,从而激励学生的学习情趣。

丰富的情感,是课堂教学语言艺术的运用,也是老师道德情操的要求。一个教态自然的教师,走进课堂应满脸笑容,每字每句都对学生有一种热情的期望。大多数学生的进步都是

从任课教师的期望中产生的。富有情感色彩的课堂教学,能激起学生相应的情感体验,能激发他们的求知欲,能使他们更好地感受和理解教材。

教学一方面是进行认知性学习,另一方面是情感交流,两者结合得好能使学生在愉快的气氛中,把智力活动由最初简单的兴趣,引向热情而紧张的思考。所以教师要热爱学生,消除学生对教师的恐惧心理。当师生之间形成了一种融洽、和谐、轻松、愉快的人际关系时,就能更好地调动学生的学习的积极性,同时指导学生改进学习方法,让学生在物理学习中变被动为主动。

3. 开展丰富的科技活动 培养物理学习的兴趣

我们可以结合国内外重大事件收集图书杂志、上网查询并下载大量有关物理学在现代科学技术方面的应用现状及发展前景的专题资料,精心组织、筛选,每学年出几期科普专栏,学生课前、课后都能承受时观赏图文并茂、通俗易懂的科普墙报,让学生感到物理就身边,与他们现在和未来的生活息息相关,他们只有努力学习才能紧随时代的步伐。这样能激发学生较高层次的学习动机和探索科学的强烈愿望,使之保持学习物理的浓厚兴趣。

动动手才能动动脑,开展第二课堂科技活动,给学生提供更多动手实践的机会,而在动手实践过程中,学生必定会遇到一些问题,而这些问题反过来会进一步激发他们探索物理科学的愿望,增强他们学好物理的自信心。

三、加强学生的解题规范化要求

物理规范化我认为主要体现在三个方面:思想、方法的规范化,解题过程的规范化,物理语言和书写规范化。对此高考也有明确的要求。如在要求计算题时:“解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位。”因此从高考的角度看高中物理的规范化要求应当从高一时就严格抓起。具体的来说应抓好以下几点:

1. 力学中要求画完整的受力分析图。运动学中要有画运动图景的习惯

力学问题中必须画出完整的受力分析图。这是至关重要的。是正确解决力学问题的关健。有的同学认为问题很简单,画图不完整,或根本就不画受力图。正确的结果往往难以得出。即使一时能得出正确的答案,但这种不良的习惯慢慢就会养成。当遇到较为复杂的问题时,就不知道如何下手了。我有时甚至会宣传一种观点:力学问题当你不理解习题,难以下手时,对物体受力分析,往往会收到意想不到效果,正所谓柳暗花明。

运动学中画运动图景辅助解题,有时作用也是不可替代的。我想我们在教学中深有体会,我们自己不画运动图景有时解题都不太容易。

2. 字母、符号的规范化书写

一些易混的字母从一开始就要求能正确书写。如u、v、μ、ρ、p,m与M等,认真书写,我在教学中就发现有不少同学m与M不分,那么表达式就变味了。

受力分析图中,力较多时,如要求用大写的F加下标来表示弹力,用小写的f加下标来表示摩擦力,用F与F′来表示一对弹力的作用力与反作用力。力F正交分解时的两个分力Fx、Fy,初末速度V0、Vt等等。

3. 必要的文字说明

“必要的文字说明”是对题目完整解答过程中不可缺少的文字表述,它能使解题思路表达得清楚明了,解答有根有据,流畅完美。

比如,有的同学在力学问题中,常不指明研究对象,一上来就是一些表达式,让人很难搞清楚这个表达式到底是指向哪个物体的,有的则是没有根据,即没有原始表达式,一上来就是代入一组数据,让人也不清楚这些数据为什么这样用。同时有的同学的一些表达式中用到一些题设中没有的字母,如果不指明这些字母的意义也是让人摸不着头脑。很显然这些都是不符合要求的。

4. 方程式和重要的演算步骤

方程式是主要的得分依据,写出的方程式必须是能反映出所依据的物理规律的基本式,不能以变形式、结果式代替方程式。同时方程式应该全部用字母、符号来表示,不能字母、符号和数据混合,数据式同样不能代替方程式。演算过程要求比较简洁,不要求把大量的运算化简写到卷面上。

四、对探究式教学与学习的一点看法

新的课程标准提倡探究式教学和探究式学习,探究式学习是指学生在教师指导下,以类似科学研究的方式去获取知识和应用知识的学习方式。探究式学习的实质是学习者对科学研究的思维方式和研究方法的学习运用,通过这样一种基本形式和手段,培养创新意识和实践能力,提升科学素养。因此教师在教学过程中应该有探究式教学的意识。

但我们也不应走极端:即向学生传授物理知识大都是探究式;物理实验也都是探究性实验;习题也都牵强附会地编成探究,无论上什么样的课都是探究式的

实际上学习物理就是要在短时期内把前人通过长期大量的积累、实验得出的正确结论迅速承接过来,抽出时间和精力进行新的创新与发展,而且,培养学生探究能力不只是探究实验一种方式,介绍科学家的探究过程也是一种好的方法。

总之,探究式教学与探究式的学习并没有现成的模式,需要我们在教学实践中不断地探索。


推荐访问:高中物理 论文